If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+8x=6
We move all terms to the left:
7x^2+8x-(6)=0
a = 7; b = 8; c = -6;
Δ = b2-4ac
Δ = 82-4·7·(-6)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{58}}{2*7}=\frac{-8-2\sqrt{58}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{58}}{2*7}=\frac{-8+2\sqrt{58}}{14} $
| 3(3x+3)=-6(1-x)+8x | | 9-1/2=5b | | x/7-2=11/14 | | -7-7b=-8(7b+7) | | 6+1/5q=14 | | 2x-5x-20=5+3x-23 | | 12=108-b | | 3x+5x+x=180° | | 6/9=n/45 | | -4a-15=9 | | 3y+10=5y+24 | | 13y-28=50 | | -3x-7-2x+5=6 | | 10n+3=5n+2 | | 2x-32=4x+12 | | 5-n*4=16 | | 5-n•4=16 | | (18-2x)(15-2x)x=250 | | x²-4x-39=6 | | 3x^2-6x+2=-4 | | 5•n-11=24 | | 21=7r=-28 | | x/2=2+3 | | 5*n-11=24 | | 3(10=6e)=48 | | 35−5a=−30 | | 2t−8=2 | | 6y+11=16-9y | | 2(x-5)=x+4 | | -3(5+3x)-4x=23+6x | | 4z+5+2z=-25 | | 43x+62x+57x=55 |